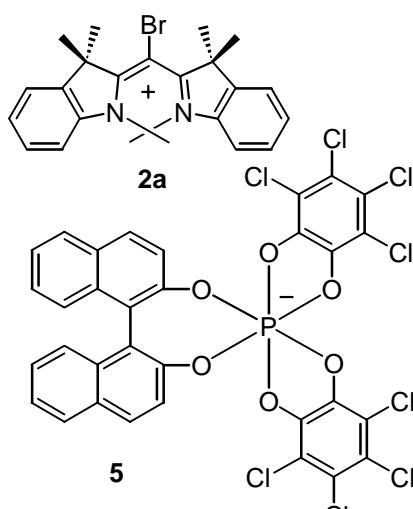


Dimethylammonium bis(tetrachlorobenzenediolato)mono([1,1']-binaphthalenyl-2,2'-diolato)phosphate(V), [9][5]:

To a stirred solution of 422 mg (1.70 mmol) of tetrachlorocatechol and a catalytic amount of NH₄Cl (~2 mol%) in dry toluene (5.00 mL) under a nitrogen atmosphere was added 350 µL (1.80 mmol) of freshly distilled tris(dimethylamino)phosphine. Dimethylamine evolved. The mixture was refluxed for 15 min., then the solvent and the excess tris(dimethylamino)phosphine were removed under reduced pressure and the residue was carefully dried *in vacuo*. 286 mg (1.00 mmol) of racemic BINOL **4** and 420 mg (1.70 mmol) of *o*-chloranil were added and the mixture was dissolved in CH₂Cl₂ (10.0 mL). The dark red solution progressively lost its color and a precipitate was formed.

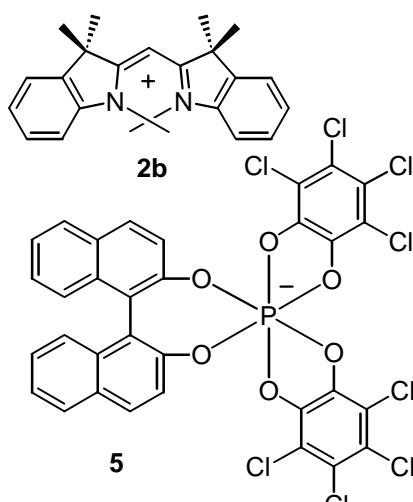

When the color did not change anymore, the precipitate was filtered, washed successively with CH₂Cl₂, toluene and CH₂Cl₂, and dried to afford 780 mg (80 %) of the desired [Me₂NH₂⁺][BINPHAT] salt as a single diastereomer. White solid. **M.p.** > 215-216°C (decomposition). **IR** (KBr) 3642w, 3176m, 3056m, 2809m, 2458w, 1592m, 1450s, 1390s, 1332m, 1301m, 1235s, 1075w, 992s, 952s, 828s, 783m, 753m, 674s, 618s. **¹H NMR** (400 MHz, DMSO-d₆) 2.53 (s, 6H), 6.56 (d, *J* = 8.8 Hz, 2H), 7.26 (d, *J* = 3.6 Hz, 4H), 7.38 (m, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 8.15 (s broad, 2H). **³¹P NMR** (162 MHz, DMSO-d₆) -81.8. **³¹P NMR** (162 MHz, MeOH-d₄) -83.0. **¹³C NMR** (100 MHz, MeOH-d₄) 35.5 (CH₃), 115.0 (C_q, d, *J*_{C-P} = 18 Hz), 115.1 (C_q, d, *J*_{C-P} = 20 Hz), 122.2 (C_q), 123.6 (C_q), 123.6 (CH, d, *J*_{C-P} = 3.0 Hz), 124.3 (C_q, d, *J*_{C-P} = 3.0 Hz), 125.2 (CH), 126.5 (CH), 128.0 (CH), 129.3 (CH), 130.4 (CH), 132.1 (C_q), 133.7 (C_q), 143.5 (C_q, d, *J*_{C-P} = 9.1 Hz), 144.1 (C_q, d, *J*_{C-P} = 5.3 Hz), 153.2 (C_q, d, *J*_{C-P} = 12 Hz). **MS** (ES) (-) 807.0. **UV/Vis** (MeOH, 1.25·10⁻⁵ M) λ_{max} (ϵ) 220 (2.1·10⁵); 301 (2.1·10⁴), 329 (8.9·10³). **Anal.** Calcd. for C₃₄H₂₀NCl₈O₆P · 3.44 H₂O: C, 44.63; H, 2.96; N, 1.53. Found: C, 44.62; H, 2.95; N, 1.72.

Salt [9][Δ-5]: Prepared according to above described using (*S*)-BINOL (286 mg, 1.00 mmol) to afford, after precipitation and filtration, 800 mg (0.87 mmol, 87%) of [9][Δδ-5]. $[\alpha]^{20}_{\text{D}} = -42$ (*c* 0.39; MeOH). **CD** (MeOH, 7.70·10⁻⁶ M, 20°C): λ ($\Delta\epsilon$) 229 (248), 243 (-107), 262 (29), 300 (-19).

Salt [9][Λ-5]: Prepared according to above described procedure using (*R*)-BINOL (286 mg, 1.00 mmol) to afford, after precipitation and filtration, 824 mg (0.95 mmol, 95%) of [9][Λλ-5]. $[\alpha]^{20}_{\text{D}} = +39$ (*c* 0.34; MeOH). **CD** (MeOH, 1.25·10⁻⁵ M, 20°C): λ ($\Delta\epsilon$) 229 (-250), 243 (122), 262 (-21), 295 (23).

General procedure for the exchange of ammonium cations for monomethinium cations

1.0 equivalent of the desired Me₂NH₂⁺ phosphate salt was dissolved in CH₂Cl₂ or a 10:1 mixture of CH₂Cl₂ and THF and 1.0 equivalent of the tetrafluoroborate salt of the desired monomethinium cation [**2a,b**][BF₄⁻] was added. The mixture was stirred for 10 min and the solvent was then removed under reduced pressure. The crude reaction mixture was purified by chromatography over basic alumina using CH₂Cl₂ as the eluent.



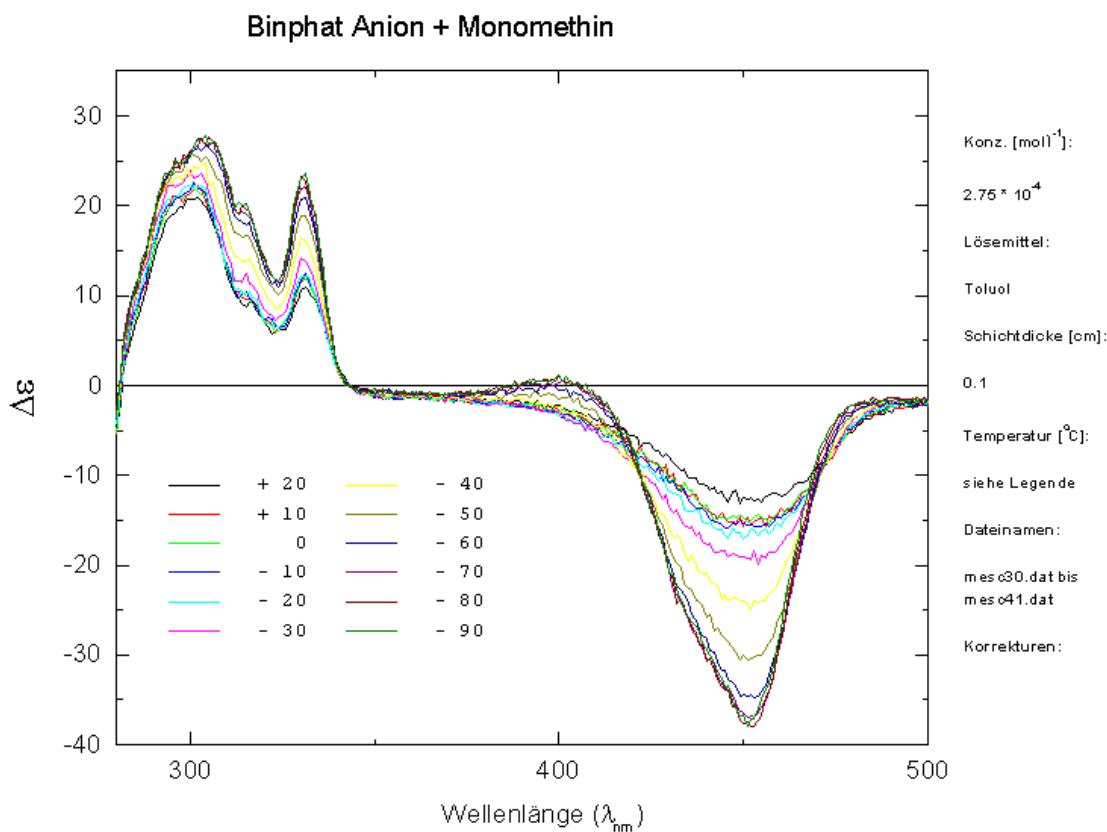
8-Bromo-bis(1,3,3-trimethylindoline-2-yl) monomethinium bis(tetrachlorobenzene diolato)mono([1,1']-binaphthalenyl-2,2'-diolato)phosphate(v), Salt [2a][5]:

Prepared according to the general procedure using 127 mg (150 μ mol) of [9][rac-5]. Yield: 78%. Red solid. **M.p.** $> 193^{\circ}\text{C}$ (decomposition). **IR** (KBr) 2972w, 2925w, 2854w, 1727w, 1619w, 1484s, 1455s, 1385w, 1358m, 1264m, 1120w, 1010w, 994m, 954m, 822s, 785m, 752m, 6711m, 615m, 488w. **^{31}P NMR** (162 MHz, DMSO-d₆) -81.4. **^1H NMR** (400 MHz, DMSO-d₆) 1.79 (s, 6H), 1.87 (s, 6H), 2.96 (s, 6H), 6.56 (d, $J = 8.8$ Hz, 2H), 7.28 (d, $J = 3.8$ Hz, 2H), 7.340 (m, 4H), 7.49 (m, 4H), 7.66 (d, $J = 7.3$ Hz, 2H), 7.88 (d, $J = 8.8$ Hz, 2H), 7.96 (d, $J = 8.1$ Hz, 2H). **^{13}C NMR** (100 MHz, DMSO-d₆) 22.3 (CH₃, d, $J = 1.6$ Hz), 28.4 (CH₃), 37.7 (CH₃), 53.6 (C_q), 113.0 (C_q, d, $J_{\text{C-P}} = 18$ Hz), 113.2 (C_q, d, $J_{\text{C-P}} = 20$ Hz), 113.5 (C_q), 120.3 (C_q), 121.7 (C_q), 122.6 (C_q), 122.7 (C_q), 122.8 (CH), 122.9 (CH), 123.0 (CH), 124.5 (CH), 126.0 (CH), 126.7 (CH), 127.3 (CH), 128.7 (CH), 129.0 (CH), 129.5 (CH), 130.3 (C_q), 130.4 (C_q), 132.2 (C_q), 141.0 (C_q), 142.1 (C_q), 142.5 (C_q, d, $J_{\text{C-P}} = 8.2$ Hz), 143.0 (C_q, d, $J_{\text{C-P}} = 5.8$ Hz), 152.1 (C_q, d, $J_{\text{C-P}} = 12$ Hz), 178.4 (C_q). **MS** (ES) (-) 807.3; (+) 410.5. **UV/Vis** (CHCl₃, 1.36·10⁻⁵ M) λ_{max} (ϵ) 241 (8.1·10⁴), 302 (2.5·10⁴), 331 (1.3·10⁴), 513 (2.4·10⁴).

Salt [2a][Δ -5]: Prepared according to the general procedure using 152 mg (170 μ mol) of [9][Δ -5]. Yield: 68%. Red solid. **M.p.** $> 195^{\circ}\text{C}$ (decomposition). $[\alpha]^{20}_{\text{D}} = +587$ (*c* 0.09; MeOH). **CD** (CHCl₃, 1.75·10⁻⁵ M, 20°C): λ ($\Delta\epsilon$) 248 (-102), 265 (26), 294 (-16), 332 (-6.2), 528 (3.8).

Salt [2a][Λ -5]: Prepared according to the general procedure using 341 mg (400 μ mol) of [9][Λ -5]. Yield: 93%. Red solid. **M.p.** $> 208^{\circ}\text{C}$ (decomposition). $[\alpha]^{20}_{\text{D}} = -480$ (*c* 0.09; MeOH). **CD** (CHCl₃, 1.36·10⁻⁵ M, 20°C): λ ($\Delta\epsilon$) 249 (96), 266 (-23), 294 (17), 332 (7.1), 520 (-4.3).

Bis(1,3,3-trimethylindoline-2-yl)monomethinium bis(tetrachlorobenzene diolato)mono([1,1']-binaphthalenyl-2,2'-diolato)phosphate(v), Salt [2b][5]:


Prepared according to the general procedure using 341 mg (400 μ mol) of [9][rac-5]. Yield: 95%. The product can be further purified by crystallization in CH₂Cl₂/EtOAc by slow diffusion of hexane. Yellow solid. **M.p.** 203-205°C. **IR** (KBr) 3054w, 2964w, 2925m, 2854w, 1727w, 1619w, 1555s, 1462s, 1385s, 1334w, 1303w, 1236m, 1125w, 1075w, 1010w, 994m, 954m, 822s, 784m, 753m, 724w, 698w, 672s, 654m, 616m, 564w, 532w, 488w. **^{31}P NMR** (162 MHz, DMSO-d₆) -81.7. **^1H NMR** (400 MHz, DMSO-d₆) 1.56 (s, 12H), 3.25 (s, 6H), 5.74 (s, 1H), 6.55 (d, $J = 8.8$ Hz, 2H), 7.26 (m, 4H), 7.33-7.38 (m, 4H), 7.46 (m, 4H), 7.62 (d, $J = 7.2$ Hz, 2H), 7.82 (d, $J = 8.8$ Hz, 2H), 7.94 (d, $J = 8.4$ Hz, 2H). **^{13}C NMR** (100 MHz, DMSO-d₆) 34.6 (CH₃), 43.8 (NCH₃), 80.8 (CH), 120.6 (CH), 120.8 (C_q, d, $J_{\text{C-P}} = 19$ Hz), 121.0 (C_q, d, $J_{\text{C-P}} = 20$ Hz), 128.0 (C_q), 129.5 (C_q), 130.5 (C_q), 130.6 (C_q), 130.7 (CH), 130.9 (CH), 132.2 (CH), 133.8 (CH), 134.0 (CH), 134.5 (CH), 136.4 (CH), 136.6 (CH), 137.2 (CH), 138.1 (C_q), 147.8 (C_q), 150.3 (C_q, d, $J_{\text{C-P}} = 8.3$ Hz), 150.9

(C_q, d, $J_{C-P} = 6.1$ Hz), 151.9 (C_q), 160.0 (C_q, d, $J_{C-P} = 12$ Hz), 190.3 (C_q). **MS (ES)** (-) 807.1; (+) 331.2. **UV/Vis** (CHCl₃, 5.62·10⁻⁵ M) λ_{max} (ϵ) 246 (4.9·10⁴), 303 (1.7·10⁴), 331 (8.0·10³), 439 (2.5·10⁴). **Anal.** Calcd. for C₅₅H₃₉Cl₈O₆PN₂: C, 58.02 H, 3.45; N, 2.46. Found: C, 57.74; H, 3.73; N, 2.51.

Salt [2b][Δ-5] made from (S)-BINOL: Prepared according to the general procedure using 256 mg (300 μmol) of [9][Δ-5]. Yield: 88%. Orange solid. **M.p.** 222-225°C. $[\alpha]^{20}_D = -42$ (c 0.18; MeOH).

Salt [2b][Λ-5] made from (R)-BINOL: Prepared according to the general procedure using 341 mg (400 μmol) of [9][Λ-5]. Yield: 93%. Orange solid. **M.p.** 218-222°C. $[\alpha]^{20}_D = +38$ (c 0.19; MeOH).

CD spectra (280-500 nm) of [2b][Λ-5] (2.75·10⁻⁴ in toluene), temperature dependence.

X-ray structural determination of (+)-[2b][5] : [(C₃₂H₁₂O₆PCl₄)⁻ (C₂₃H₂₈N₂)⁺]₃ (C₄H₈O₂)₄; M_r = 3768; $\mu = 4.177$ mm⁻¹, F(000) = 1938, d_x = 1.426 g·cm⁻³, triclinic, P 1 (No 1), Z = 3 (3 ions pairs and 4 EtOAc in the asymmetric unit), a = 15.542(1), b = 17.385(2), c = 19.170(2) Å, $\alpha = 65.702(7)$, $\beta = 83.635(9)$, $\gamma = 68.538(6)$ °, V = 4388.7(8) Å³, from 27 reflections ($36^\circ < 2\theta < 45^\circ$); Yellow prism 0.14 x 0.21 x 0.38 mm mounted on a quartz fiber with RS3000 oil. Cell dimensions and intensities were measured at 200K on a Stoe Stadi4 diffractometer with graphite-monochromated Cu[Kα] radiation ($\lambda = 1.5418$ Å), ω -2θ scans, scan width 1.05° + 0.35 tg θ, and scan speed 0.075 °/s. Two reference reflections

measured every 45 min showed no variation. $-15 < h < 15$; $-17 < k < 17$; $-19 < l < 19$; 16433 unique reflections measured of which 11323 were observables ($|F_O| > 4 \sigma (F_O)$); Data were corrected for Lorentz and polarization effects and for absorption [a] ($A^* \text{ min}^2, \text{ max} = 1.691, 2.902$). The structure was solved by direct methods using MULTAN 87 [b], all other calculations used XTAL [c] system. The chirality of the structure was refined and the Flack parameter [d] converges to $x = 0.01(2)$. Full-matrix least-squares refinement based on F using weight of $1/(\sigma^2(F_O) + 0.0005(F_O^2))$ gave final values $R = 0.063$, $\omega R = 0.059$, and $S = 2.01(2)$ for 2070 variables and 11323 contributing reflections. Hydrogen atoms were placed in calculated positions. All non-H atoms, excepted for the EtOAc inclusion molecules, have been refined with anisotropic displacement parameters. The final difference electron density map showed a maximum of +0.68 and a minimum of -0.69 $e\text{\AA}^{-3}$.

References:

- [a] E. Blanc, D. Schwarzenbach & H.D. Flack, *J. appl. Cryst.* **1991**, 24, 1035-1041.
- [b] P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, & M.M. Woolfson, **1987**. *A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data*. Univs. of York, England, and Louvain-la-Neuve, Belgium.
- [c] S.R. Hall, H.D. Flack & J.M. Stewart, **1992**. *Eds XTAL3.2 User's Manual*, Universities of Western Australia and Maryland.
- [d] H.D. Flack *Acta Cryst.* **1983**, A39, 879-881. G. Bernardinelli, G. & H.D. Flack *Acta Cryst.* **1985**, A41, 500-511.